注册帐号丨忘记密码?
1.点击网站首页右上角的“充值”按钮可以为您的帐号充值
2.可选择不同档位的充值金额,充值后按篇按本计费
3.充值成功后即可购买网站上的任意文章或杂志的电子版
4.购买后文章、杂志可在个人中心的订阅/零买找到
5.登陆后可阅读免费专区的精彩内容
打开文本图片集
摘 要:为解决传统机器学习方法在泥石流堆积扇识别中的精度低、效果差的问题,提出一种基于深度学习的残差注意力可分离UNet算法(RAMS-UNet)。该算法在编码部分采用VGG16主干网络进行特征提取,加深网络层次;在跳跃连接部分引入改进的注意力机制,强化信息传递;在解码部分使用深度可分离卷积和密集连接块,进一步增强空间和通道上的信息表达能力。(剩余13288字)
登录龙源期刊网
购买文章
融合残差注意力机制的深度可分离UNet泥石流堆积扇分割
文章价格:6.00元
当前余额:100.00
阅读
您目前是文章会员,阅读数共:0篇
剩余阅读数:0篇
阅读有效期:0001-1-1 0:00:00