基于Res-Inception的农作物病虫害识别技术

打开文本图片集
doi:10.15889/j.issn.1002-1302.2024.20.022
摘要:针对现有视觉识别技术对于农作物病虫害识别存在实际农业生产中识别效果不佳的问题,研究提出了一种结合ResNet和Inception 2种模型优点的新构架Res-Inception块。Res-Inception块中采取了ResNet中的残差结构使得模型可以有效应对深度过深造成的过拟合和模型退化的问题;Res-Inception块中的卷积层采用Inception模型中的并行联结策略,将传统的3×3卷积核由并行的1×3、3×1卷积核代替,在简化模型参数量的同时使得模型获得了更强的多尺度特征提取能力;最后通过迁移学习使模型拥有高效的学习能力。(剩余12438字)