目录 正文页 首页

一类圆锥曲线定点定值问题的解法赏析

数理天地(高中版) 汤鑫嵘

【摘 要】 直线与圆锥曲线的位置关系是高考数学的考察重点, 其中定点与定值问题不仅是高频考点, 同时也是难点. 解决此类问题对学生的直观想象、逻辑推理、数学运算等数学核心素养要求较高. 本文将对一类与斜率之和或积有关的定点定值问题的解法进行赏析, 通过一题多解,开拓学生解题思路, 提高学生解题效率.

【关键词】 圆锥曲线;定值问题;解法赏析

3 反思归纳

3.1 适用范围

特点是两条直线有公共点,且与圆锥曲线都相交,已知两直线的斜率之和或积为常数, 求证经过两个交点的直线l斜率为定值或直线l恒过定点的这类问题不仅可以用常规联立法还可以用平移齐次化法.

3.2 相较于常规解法, 平移齐次化的优势在于

(1)大大减少了计算量,减少学生计算出错的概率,提高学生得分率;(2)避免了讨论直线斜率是否存在的情况, 充分反映了高考命题的方向“多思少算”,完美体现了逻辑推理的数学素养. (3)是一种通法, 具有模式化的特点,易于操作的同时缓解了学生的计算焦虑情绪,提高学习解析几何的兴趣.

3.3 具体步骤

(1)平移坐标系使原点与两直线的公共点重合; (2)设平移后的直线为l:mx+ny=1; (3)将“1”代入椭圆方程构造出齐次方程; (4=4\*roman) 转化成Ak2+Bk+C=0(A,B,C为常数)的形式;(5)根据韦达定理并结合已知写出直线l的方程; (6)将直线l恒过定点还原回原直线恒过定点.

解析几何定点定值问题思维难度大,计算量大,重点考察的是学生的逻辑思维能力,运算求解能力和数形结合思想.要想解决这一类问题应该“多思精算”,注重归纳适合一类问题的通性通法.平移齐次化这种方法针对文中"斜率的积或和"的题型适用,除2020年山东新高考数学卷第22题以外,2017年全国新高考数学Ⅰ卷理科第20题也是十分适用.通过文中的这则实例,我们可以感受到常规方法虽然容易想到,但计算量大.学生操作起来难度很大,即便有思路,得分率也很低.而平移齐次化这种方法就可以大大地简化计算也可避免讨论,只需要同学能识别这类题型,便可迎刃而解。(剩余513字)

试读已结束,购买后继续阅读 阅读全文3.00

文章会员,69元300篇文章超值畅读!立即开通

  • 购买文章
  • 关闭
确定购买:
一类圆锥曲线定点定值问题的解法赏析
文章价格3.00
  • 取消
  • 余额不足
  • 关闭
您的当前余额不足,是否去充值?
当前余额为:0.00
  • 取消
购买文章:

一类圆锥曲线定点定值问题的解法赏析

文章价格:3.00 元
您的余额:21.00元,余额支付》
阅读文章:

一类圆锥曲线定点定值问题的解法赏析

您目前是文章会员,阅读数共:0

剩余阅读数:0

阅读有效期:0001-1-1 0:00:00

确定是否阅读此文章?

确定
monitor