基于改进RFM模型和K-means算法的淘宝用户行为分析
滁州学院学报 陈海燕 张经纬
摘 要:大数据时代下,我国电子商务发展迅速,用户行为数据日益增多,利用海量数据对用户行为进行剖析,为精准营销提供决策依据,进而提高用户忠诚度、满意度和活跃度,成为电商平台关注的焦点。基于淘宝用户真实数据集,提出基于改进RFM模型和K-means算法的用户行为分析方法,为了更好地描述用户行为特征,创建“活跃度转化率”指标进行分析,实验结果表明,该方法能够有效地进行用户类别划分,划分结果符合“二八定律”,能够协助电商平台完成精确化的客户关系管理。(剩余7244字)